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I INTRODUCTION

A critical problem in a missile defense system is that of predicting

the trajectory and impact point for a ballistic reentry vehicle. This

memorandum will describe methods of prediction as well as numerical results

for several representative examples. There are several reports ,2describ-

ing the estimation of the states of a ballistic missile; the ballistic

trajectory and impact point will be predicted by using these estimated

values.

There are several important points to be considered. Fiist is the

choice of the coordinate system to be employed. Either a radar coordinate

system or a rectangular coordinate system centered at the radar site can

be used for the problems being studied. Second is the treatment of

physical parameters in the equation of motion, such as the ballistic co-

efficient of the reentry vehicle and the eccentricity and rotation of the

earth. Since the time required for computation may become significantly

large, it is also very desirable to find a closed-form solution of the

equation of motion, which is a rather complex nonlinear differential

equation. The important point here is how much the accuracy of the solu-

tion is degraded in obtaining a closed-form solution. Third is the propa-

gation of initial errors to the final values in prediction; this is val-

uable in order to trade off the magnitude of errors and the computation

time in estimation. For this purpose, the sensitivity of the initial

values to impact points is briefly investigated.

S (rfreftree are listed at the end of th text.
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I I EQUATION OF MOTION

The following differential equation in state-variable form describes

Lhe motion of a ballistic missile; the derivation of this equation is

shown in the Appendix and the coordinate system is shown in Fig. 1.

X=AX+ B +C +D

k (z)

RADAR SITE

FIG. 1 COORDINATE SYSTEM

_g
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C - 'dEt'tntri'ity of re'r-rence ell ipsoidal earth
(,"." 0.006bQ45)

J - Iimen.eiplless colistant - 1.624 x 10- 3

Gzeocentr-it latitude of target

a nquatorial radius of earth (20,926,743 ft).

l1 e linear coeitir-sent mat rix A is a 6 x 6 matrix whose elements are

co:stant except for three , lements containing the atmospheric mass density

'llie vector B is constant amd the %ector C is a nolinear term that
be negligible if , the magnitude of tie target ve locity, and r, the

magnitude of the position vector from the earth to the target, do not

change significantly. The last term D contains the elements describing

the influence of the eccentricity of the reference ellipsoidal earth.

ien e., if eccentricity r is considered to be zero, then the tern, D vanishes.

One of the objectives of this report is to investigate simplifications

of the differential equation des,:ribed above. If the terms C and Q are

negligible, the differential equation will become . v AA - R. It is true

that a linear differential equation with time varying coefficients is no

better for finding an analytical solution than a nonlinear different. al

equation. However, if tle time varying cofficients are approximated as

constant for a certain tame interval, tten piecewise closed-form solutions

'an be obtained.

Raxed on plh. iral considerations, it is helpful for the purpose oi

the following discussion to divide the atmosphere into two regions. One

i- called e.oatsuphere, defined as the space above an altitude of

300.000 ft; the other i4 called endoatsosphere, defined al the space below

an ailtit'jde of 300,000 ft.



III ENDOATMOSPHERIC PREDICTION

For ballistic missiles at an altitude of 300,000 ft with a range

of 200 miles, it will take less than a minute for the high-,. vehicles

to impact and at most several minutes for the low-2 vehicles. There-

fore, the gravity gradient due to the oblateness oi the eatth is negli-

gible, and the term _ can be omitted in the investigaLion ot endoatmos-

pheric trajectory prediction. The effect of the earth's rotation rate

cc is also negligible, except for small deviations that are observed

during the last 10,000 ft before impact. The impact oint is defined

in this report as the point at which a trajectory reaches an altitude

of 10,000 ft.

Theoretical considerations and numerical results obtained indicate

that the term ( in Eq. (1) is negligible for endoatmosphere prediction.

and this is especially true ior high-.- missiles. An approximate differ-

ential equation describing the ballistic trajectory takes the form

X X (2)

Moreover. if w can be considered as zero. then the differential equation

is simplified further and becomes

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 0

0ooo 0 -
0

0 G 0 0 V o 0

0 0-f 0 0 t- lVN

1)1

06
L



Thie aboye equation- geterates predicted trajectories, which are very close

to the actual tiajt'ctories down. to 50.000-ft altitude from an altitude of

'00, 000 ft. Ilencv, i f Ohe initercept. altitude is- higher than 50,000 ft,

the differential Eq. (3) Is a good approximation to the equation of motion

for both highl-,3 and 1ow-Omissiles. For prediction of the trajectory down

to 10,000-ft altitude, the above differential equation is still a good

mathematical model for hl-gb--3 missiles.

The densitv. of the atmosphere changes in a complex manner; an expo-

nenti'al curve was u:sed t o approximate the density-altitude curve. As

Fig. 2 sho~ws, this curve does not match exactly with the U.S. Standard

Atriospherei%92', However, for thc prediction of an impact point, this

exp~one~ntial model is sufficiently accur ate.

Several characteristics of Eq-. (1) in endoatmo~pherc are discussed

tin ;he follo~ing sections, and the sensitivity of impact points to initial

%alues is mentioned in Sec. V.

V. Characteristics of tih Ballistic Trajectories
in Endoatmosphere

As shown by the numerical results (see Fig., 3), p-roj ec tions' of the

trajectories on the x.-y plane are almost straight' lines.- If the initial

conditions are the samne for trajectories with different co n a an t values

of $, then the x-y projections of their trajeftories will- lie on top of

each other with the high-," missiles flying further than the low-p missiles.

The impact Points lie on a straight line in the- x-.y plane regardless of-

.3 values.

from Fig. 3 it can be se6en that the projections of ballistic trajcc-

tories on the x-y plane do not differ very much for different values of

3. lortwvei, the projections if- ballistic trajectories on the z-x plane

di-fler slightly for different values of (see Fig. 4).

rhe sensiti.'ity of the impact point prediction to the ballistic co-

effici%:nt . 3Is a function of the value of ,B; for low 6 the sensitivity

is large, and for high f' the sensitivity becomes small. Therefore, it is

rather imp.)rtant to detect whether ia target missile has low ,B or high 8

In tit, hIgh-P case, it is possible to predict the impact point wit~h high

Mcuracy. An) inaccuracy can be made smaller by re- estimating the bal-

list ic coefficient. The major effect of P~ on the trajectory occurs at

dit Altitude of less than 150,000 ft. Since 6 comes into the differential

7



10-1

U ..S. STANDARD ATMOSPHERE 1962

EXPONENTIAL APPROXIMATION

10-2

Po0a 7.6474 X 10-2
K .OXIO

9 32.174 ft/soc2

.

104

10-5

10,6

0 100 200 300
z - kft

TO- 5188-451

FIG. 2 DENSITY OF THE ATMOSPHERE



120

100 INITIAL CONDITIONS:
zz9. 20640 x 105 ft
:4,51515 x 1O5t

z3.27897 zIO5 ft

80 - 1. 81864 X10 4 ft /SeC
1 1. 12315 X 04 ft/SGC

zi-7.01397 110 3 ft/sec
0-IMPACT POINT

60

40

20

0 5000,2000

-201
100 200 300

x - kft
TO- 5166- 452

FIG. 3 BALLISTIC TRAJECTORIES ON THE x-y PLANE, CASE 1



100 30
31

INITIAL CONDITIONS: 31

X= 9.20640X10 5 ft 32

90 y= 4.51515 xlO5 ft

3,27897 xlO~ft 33

i=- 1. 81864 X 104 ft/sec 32ic - 1.12315 x 104ft/seC 34

80 i-701397 xiJ 3 ft/sec
[r

70 
36

37

36
35

39

500

40 38t

I

3960

30

t =40 ec, 70 -  /3 20

20 sO

a, 5000,2000 4' 400

42 9 0

10 60

bOO

K 30
tOO 200200

Iso

K hf100 o ,00
! g x kft

TB- Sign- 453

FIG. 4 BALLISTIC TRAJECTORIES ON THE z-x PLANE, CASE 1

i10



7
equations in tile form ,/P and p is a verv rtmall value for high altitude,

ti/P is not a significant term unless the altitude is comparatively low

(i.e., less than 150,000 ft).

B. Influence of 13 in Endoatmosphere

In general, the shape of the /3-altitude graph is parabolic-like and

has a maximum value. Several examples are shown in Figs. 5 and 6. Ex-

perimental computations have been conducted by using the minimum, average,

and maximum values for ,. These results were then compared with the exact

solution. The predicted trajectories and impact points for some repre-

sentative cases are shown in Figs. 3, 4, 7, 8, 9, and 10. When the win-

imum value (constant) was used, the numerical results turned out to be

quite different from the exact solution. On the other hand, if the

maximum value (constant) of /3 is used, the deviation from the exact solu-

tion is not too large. For the case of high g3, the maximum value will

give the impact point without a significant error. However, the approxi-

mate value of ' will cause an error in the impact time.

If a target missile is known to have a characteristic of-high g3, it

is permissible to calculate the impact point by using a predicted maximum

value of .2 or a value slightly smaller (by 10 to 20 percent) than the

maximum value of 63. If a target missile has a characteristic of low /,
the prediction of the impact point will be more difficult than that for

a high-P missile (refer to Figs. 3 and 4).

Consider the x-y projc:ction of the trajectory. The impact points

for high-B ballistic coefficients are very close to each other even

though the /5 values are different Some examples where /3 ranges from
1000 to 5000 lbi'ft 2 show that the deviations are 5000 ft in the x

direction and 3000 ft in the y direction at the impact point (refer to

Figs. 3 and 4).

For low-fr and high-f missiles having the same initial conditions

and impacting on the surface of the earth, the impact points for the

low-h" missiles lie on the x-y projection of a trajectory for a high-P

missile; in other words, the projectionn of low-fr missiles on the x-y

plane are shorter than those of high-9 missiles. Moreover, the x-y pro-

jections of these trajectories are almost straight lines.

II
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Projections of trajectories on the :--x plane for different values

of /3are again almost tht same down to an altitude of 100,000 ft. Below

100,000 ft, the z-x projections start separating and produce Comparatively

significant differences at impact. Some examples show that, because of

different /3, values (from 200 to 5000 lb/ft 2 ), projections of trajectories

on the x-y plane differ almost 50,000 ft in the z direction an(, jOOD00 ft

in the y direction (refer to Figs. 3, 4, 7, and 8).

Naturally the deviations differ according to the different values

of the initial conditions. If the initial altitude is low and the descent

speed 1 is high, then the deviation due to the different values of P3 is
not large. For comparison purposes one example of this kind is shown in

Figs. 9 and 10.

C. Effect of Nonlinearitv in Endoatmosphere

For endoatmospheric prediction, the nonlinear term C is negligibleiiif there is no significant, change in values of r and 1'. lit the endoatmos-

phere case the maximum deviation of r will be

-o rimpact) (a 300,000) -a .3 UY ,

r(impact) a L4 1-

where a is the radius of the earth. Hence, the value i/rO3 - lir 31in the

term C is negligrible compared to Iro for the endbotmospheric missilej

traj ectori es.

On the other hand, the value [Y0 - i in the ttrma r is net neetssarily

negligible compared to Vtt. Since a high-/3 missile doeS not A1o% do*wn Sig-

nificantly, the value [V0 - V is negligible compared to i'o. Thi. telocit~y

of a low-,! missile chantres its velocity m~uch more than that of a high.,8

misaile. As a result, the value IV~ V)h is not negliltible, and for somte

IOW.-0 ami ssiI*$

beezc% 0.5 or grater.

-- -- --- -



In conclusion, for endoatnmospheric prediction the term C is negli-

_ giblc for high-/3 missiles, and the term C should be handled ':arefully for

* low-,? missiles. lit order to illustrate the effects of the term C on

prediction, trajectories of high-Bl and low-,6 missiles are shown. Figures

11 and 12 and Table I show the high-/3 case, and Table 11 shows the low-'l

case.

D. Influence of -, in Endoatmosohere

For endoatmospheric prediction, the influence of the -earth rotation

rate c, is much more significant than that of the eccentricity e. An ex-

ample of a high-,3 missile in the endoatmosphere is shown in Figs. 11 and

12 ad Table I. With and without consideration of w, the flight time

difference is less than 0.5 sec andthe deviation of the impact points is

ab(;ut 6400 ft (5000 ft in the x direction and 4000 ft in the y direction).

In this example. it takes about-43 sec to impact. A fixed point on

the equator moves about 10 nautical miles during these 43 seconds. Then

why ib the deviation of the impact points with end without consideration

of c. about 1 nautical mile rather than 10 nautical miles? The answer to

this q -stion is straightforward; The velocity of a target is measured

with respect to the moving coordinate system, which is. fixed to the

earth at the radar site and rota.es with the earth. Therefore, the

deviation of impact points with and without w is not caused by the motion

*1 of the radar site but is mainly caused by the effect of the coriolis term

in Eq. (1).

Another example is shown in Table II. This is the case of a low-,8

missile in the endoatmosphere. The deviation of the impact points with

and without consideration of c is about 5000 ft (4000 ft in the x direc-

tion and 3000 ft in the y direction). Since this is a low-I3 missile, it

takes about 74 sec to impact, which is about 80 percent longer than the

time required for the high-,3 missile with the same initial conditions.

The low-I3 missile takes a longer time to impact than the high-/3 missile,

vet the deviation of impact po:nts for the low- 3 missile with and without

consideration of u is smaller than that for the high-A missile. This is

because the main contribution 'f o) is the coriolis term, which is pro-

port ional to the vector product u x V of the earth rotation rate and the

yelocity of the nissile. Since _, is constant, the effect due to coriolis

trM depends oni the magnitude of L. The higher the velocity of a missile,

the arger the deviation that will occur.

18
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E. Effect. of Eccentricity in Endoatmosphere

Eccentricity e comes into the differential equation of motion as the

correction introduced into the gravitational force term due to the oblate-

ness of the earth. The deviations of impact points with and without con_

sideration of the eccentricity e are shown in Figs. I1 and 12 and in

Tables I and II.

Figures l1 and 12 and Table I show the case of a high- rissile in

endoatmosphere. The deviation is about 220 ft (180 ft in the x direction

and 130 ft in the y direction). There is no difference in impact time.

Table II shows the case of a low-i3 missile in endoatmosphere. The

deviation is about 100 ft (100 ft in the x'direction and 22 ft in the y

direction). The difference in impact time is about 0.03 sec.

In conclusion, the effect of the eccentricity e is entirely negligible

for trajectory prediction in the endoatmosphere.

F. Approximation of Nonlinear Term in Endoatmosphere

* As discussed in the previous sections, Eq. (1) can be approximated

as

X = AX + B for high 13 missiles, (4)

and

X AX + B + C for low ,8 missiles (5)

in endoatmospheric trajectory prediction.

If we consider p1/3, r, and V to be piecewise constant, then the

mutrix A and the term C become piecewise constant. Hence, it is possible

to find a piecewise closed-form solution for Eqs. (4) and (5). The accu-

racy of the solution depends upon the integration step size and the time

interval during which pl/3, r, and V are kept constant. Experimental

computations were performed by taking five time intervals, namely, 1, 2,

3, 4, and S sec. The results are shown in lables III and IV.

The purpose of obtaining a closed-form solution is to shorten the

computation time to predict the missile trajectory. The approximation

described above produces s,me inaccuracies. If the inaccuracies can be

23
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I

tolerated, a closed-form solution should be used in order to reduce the

computation time.

As a reference, it may be helpful to give an approximate computation

time to solve the differential Eq. (1) numerically. If the iteration step

size At is taken as 100 msec and if one iteration does not exceed 0.2 msec,

then the numerical calculation of a missile trajectory for a 50-sec: flight

requires less than 0.1 sec of computatioa time.

I.2
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IV EXOATMOSPHERIC PREDICTION

In this reporL, the exoatmosphere is defined as the space above alti-

tude 300,000 ft.. Since the characteristics of the motion of ballistic

missiles in the endontmosphere ane exoatmosphere are significantly dif-

fzrent, it is very meaningful to oLtain schemes of predicting trajectories

separatell'.

A s discussed in Sec. 111, the equation of motion of missiles in endo-

atmosphere is decvribed by Eqs. (2) or (3). The equation of motion of

missiles in exoatmosphere can be approximated as

Projections of the trajectories in exoatmosphere on the x-y plane

are almost straight lines. Projections of trajectories on the z-x plane

have the shape of an ellipse or a parabola. One example is shown in

figs. 13 and 14 and Table V.

The values of q~ is 1.488 x 10-' lb ft-3 at altitude 300,000 ft

(iFg 7. 647 4 '- 10-21b ft-3 at the earth surface). Therefore, the

elIem cn t (A g;, 2"W tins very little influence on the solutions regardless of

the value of g~. The classification of missiles is no longer meaningful

in cxoattnospheric prediction problems. If we consider the term(tg/2')y

to be negligible.. then Eq. (6) is simplified as

X +8+(7)

Whet e
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approximation allows us to reduce Eqs. (6-) and (7) to linear differential

equations with constant coefficients. As a result., it is possible t, ob-

tain a piecewise dlosed-form solutioii. This appruJih is discussed in the

next section.

B. Approximation of Nonlinear Term in Exoatmosphere

In the Nike-Zeus system, prediction of the-trajectory of a reentry

vehicle is based on an analytical closed-form solution of ai, approximate

set of equations of motion. 4 In order to obtain an analvtic solution to

the equations, the effect of gravity is omitted, and the resulting predic-

tions are corrected for gravity. This is one way of approximating the

original differential equation to find a closed-form solution.

Another approach is to divide the total flight time into several

intervals and to find a closed-form solution for each interval. In other

words, term C is eliminated and the-initial values of r and V [only r in

Eq. (7)] are used for a certain time interval [0, Atl. ihe values of r

and V are recalculated by using the state values at time "It. and these

revised constant values of r and V are used for ca'culating the trajectory

for the next time interval [At, 2At]. This same procedure is continued

until impact is reached.

fhis idea is demonstrated for an exoazmospheric trajectory, and the

results are tabulated in Table V. The deviations of the predicted posi-

tion from the exact value after 240-sec flight are the following:

50,000 ft ------ without term C

20,000 ft ------ 60-sec correction of r and V in C

10,000 ft ------ 30-sec correction of r and V in C

5,000 ft ------ 10-sec correction of r and V in C

The more frequently corrections are made, the more accurately we wi;1l

obtain solutions. The suitable number of intervals for dividing the total

time depends on the error constraints.

If the total time T is divided into N intervals of At, then the

original equation is approximated as

R((t) = An X n(0 + B for nat < t < (+ lAt

T
n = 0, 1.... At
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and the initial rosiditions are defined as

XQ(O) X_

T
X,[(nAt) +- + l)An, 1 1, 2,"'".At

In the case of exoatmospheric trajectories, , is negligible; hence,

An and B,, can be considered to be constant.

C. Influence of in Exoatmosphere

An example of a missile trajectory in exeatmosphere is shown in

Figs. 13, 14. and Table V. The deviation of the impact points (compared

at the same time rather than at the same altitude) with and without con-

sideration of w is about 75,000 ft (8,000 in the x direction, 25,000 ft

in the y direction and 70,000 ft in the z direction) after 240 sec of

flight.

The velocity of the missile in this example is much larger than that

in endoatmosphere examples shown previously. Hlence, the effect of the

coriolis term is greater.

Although the effect of a is negligible for endoatmospheric trajectory

predictions, the effect is very significant for exoatmospheric trajectory

predictions.

D. Influence of Eccentricity in Exodmosphere

Figures 13, 14, and 'Fable V show the case of a missile in exoatmos-

phere. The deviation of impact points with and without consideration of

the eccentricity e is about, 2100 ft (200 ft in the x direction, 500 ft in

the y direction and 2000 ft in the - direction). The eccentricity e is

negligible (with certain reservation) for the cases in exoatosphere.

The main objective of neglecting the term D contain ing the eccentric-

try e is to simplify the differential equation in order to obtain a closed-

form solution. For exoatmospheric trajectories, the deviation can be as

large as 0.5 nautical miles after a 240-see flight. If the tolerance of

the error is several miles, then the eccentricity e can be considered

as zero. If eccentricity e cannot be considered as zero, then it is

c earl\ difficult to find a closed-form solution.
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One way to overcome this difficulty is to find at efficient numerical

integration technique. It is feasible to obtain a solution of the dif-

ferential equation (I) by using about 0.5 sec of computer time on a

present-day computer (e.g., UNIVAC 1108). The flight time for these exo-

atmospheric cases is on the order of 5 minutes or more; therefore, 0.5 sec

can be well justified for the computer calculations.

It is also possible to neglect the effect of eccentricity e and to

simplify the differential equation so that the closed-form solution can be

found. In order to support the above statement, it is usefL' to tabulate

the state values at 60 sec after the initial time for trajectories with

and without consideration of the eccentricity e. The last two i'ows of

Table V show that the deviation is about 160 ft after 60 sec.

i.
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V SENSITIVITY OF IMPACT POINTS TO INITIAL VALUES

When the state values of an incoming missile are estimated, some

errors are inevitable. In order to reduce errors, the computation time

must be increased significantly. The knowledge of the propagation of

initial erirs to the final values in prediction is very meaningful in

order to evaluate the trade-off between the magnitude of prediction errors

and the computation time in estimation. For this purpose, the sensitivity

of the. initial values to the impact points is briefly investigated.

The following simplified equation is used for the sensitivity analysis:

0

0

t 
0

0

a

where a and 6 are constant. Then the solution is described as

1 0 0 t 0 0 01
t 2

DO 00 10 0 0t 0 -tX(t) 0 0 I 0 0 t (O) + ! bt2 (8)

2

0 0 0 1 00 0

0 0 0 0 1 0 at

0 0 0 0 0 1 bt

If there is a small error AX in X(0), then the state value X(T) at time

T is expressed as
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1 0 0 T 0 0

o 1 0 0 T 0 a

0 1 0 0 1 0 - 1'"
!I(T) Co 0 1 0 0 T IX(O) + AX] + T2

2

0 0 0 1 0 0 T
0 o) 0 0 1 0 ,T

1 " 0 0 T 0 O0

0 0 1 0 0 T'
- X(T) + (9)-0 0 0 1 0 0 -

0 0 o 0 1 0

The examples considered previously are used again for the sensi-

tivity analysis. In both endoatmosphere and exoatmospihere cases, 10 per-

cent and 20 percent errors are independently introduced into each initial

value. The propagation of each error to the final values is evaluated

by integrating the differential Eq. (1) numericall) and b\ using theI relationship in Eq. (8). These results are shown in Tables VI through

.X. The values in parentheses in these tables are theoretical results

by using the relationship in Eq. (8). According to Bef. 2, the estima-

t tion errors will become about 2 percent after 5 -see of filtering. Hence,

this sensitivity analysis will give better results for more realistic

Fcases.

This coarse sensitivity analysis gives a good indication ot th°, propa-

gation of errors in the initial values. In the ex..mplo of exoatmosphere,

the sensitivity analpsis, and the numerical integratio, agree very well. In
the case of endoatmospht re, the analysis and the numeri,_al integration match

very well in most rasv , but the cases %here errors esist in :(}0 aid 1-0)

do have signi ficant deh\tations. Errors in x(0), y(t , x0)), a1d 1 0) propla-

gate in the manlier expresstd in Fa1. (9). The psitimit error.' tr1pagate

withiout an)) amplificai tion and iave little inifluence on liht, ,elocit . iThP
\ blocity errors plropla t;l without ly ampl I ii icati on ili the yr lo itv Itlf,

it they have a sigriilicant flfect o the posi t ion tI r I'S
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VI CONCLUSION

The different'i;l Eq. (1) is a good mathematical model of the bal-

listic motion. Without any approximation, it seems hopeless to find a

closed-form solution of Eq, (1). The only way to find a solution of

Eq (1) is numerical integration. As a result, it requires a signifi-

cant amount of computation time. This memorandum describes a simplifica-

tion of the differential Eq. (1) of the ballistic trajectories. The main

purpose of an approxiirition is to obtain a closed-form solution.

T!,e problems are divided into two domains, namely the endoatmospheric

problem and the exoatmospheric problem. The endoatmospheric problem is

again divided into two. namely, the high-,_ case and the low-f case. In

each case. the influences of the eccentricity e. the rotation rate CV. the

ballistic coefficient &. and the nonlinearities are considered. A summary

of the influences is shown in Table X. In exoatmospheric Frediction prob-

lems, the earth rotation rate c4 and the nonlinear te-i C should be treated

carefully, and in endoatmospheric prediction problem. the ballistic co-

efficient - should be handled properly. 1he effect. of the ballistic

coefficient is very significant on the trajectory at low altitudes (e.g..

for impact point and impact time prediction). further research effort

should be oriented toward improving the estimation and prediction of

ballistic coefficients.

Future work on the prediction problem is to obtain closed-form
solutions of Eqs (3) and (7), One possible was is to find a piecewise

,'losed-form solution over a suitable time interval by taking constant

values of ,. and C in Eqs, (3) and (), respectively.

Table X

ft- .ivell'ift I-,, .4t I,' l l ll lli IitW -'-Ipli llo .0 t . ar,-aI I sll fl~
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APPENDIX

The derivation of the differential Eq. (I) is discussed in this

appendix.

If NaP is the absolute ac,.eleration of a mi ssile P (it is considered

to be a particle) in a reference frame N and a is the niss of P. then

the inertia force F acting on P in N satisfies

F (A.1)

The reference frame N is a reference frame in which the center C of

the earth and the earth's axis, line NS. are fixed suh that the angular

velocity of the earth E with respect to the reference N. Y. is given by

where w~ 2-r- ad/day and nis a unit vector parallel to line NS. This

reference frame N is a good approximation to a Xvwton a retert:ace frame.

From Fig. 1.

$ • xt •yj • A
A A

where t, and k are unit vectors defined in Fig. I and x v, 4and are
/. A "

the measure numetra in the directionq k,, and k. resptctivtly. Thtv

velocity of P *ith-reapect to the reference is then expro.tsed as

-dt

The accelerations '9,p at time 0 art related bv

xf, P 4 Ca Mb P*z

- t.'as 1k 0M,~ tw U44 tI +t t.vif
di
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whtre P* is the point fixed in E that coincides with P at time t*, and

a is Illed the coincident-point velocity and the vector 2w x 1VP is

called the coriolis acceleration of P for the reference frames E and N.

The coincident point v'elocity I aP" satisfies

haQ N SaC IWOx r *w x (w x r)

and
N dw

dt

The acceleration of P with respect to E is

E d E V
E P EEP A IN~

a -i + Yj + z
dt

Therefore,

A A
NaP + +j + it + > (w x r) + 2& X EVP (A. 3)

.Sincr cA 4nd r are expressed as

A

(c = sin + (." COS /I])
Ax A

r = ri + rYj + rk

r = X

r = - R sin (IL- (tc)

r = + R cos (j. - c.) (A.4)

'Ihe last two terms of Eq. (A. 3) are written as

(w ×) - w• rw

A A

-cr, i + u 2 [(rY cos /L + r, sin iz) cos 4- r,]J

+ W'[r cos k4 + r sin AL) sin L - rlk

E. × VP  A,( Ao . - si z
"COS sin i + x o sin j x- (A cos/
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Therefore,

* NdP M!+ 4 cos /.L -'sin i) A

A

2 ^j

+ {y 2iu' sinii + c(r cos . r, sin u) cosj i

; - 21cc cob !z t ,2 (r cos + r sin p) sin } (A.5)

Let us now consider the left-Iand side of Eq. (A. 1). The force F

acting on a missile P is divided into two elements. namely the drag

force Fd and the gravitational force F.; hence,

F -- Fd + F% (A.6)

The drag force per unit. mass acting on a body is given approximately

by the equation

Ed - 2 i- E P (A.7)

Next, let us find the expression of the gravitational force. [
The gravitational potential at P due to the earth E is expressedb as

';EiP m-r  
- 2r 2-- [31 - (11 , I. + +

where I is the moment of inertia about the line OP and I,, I, and I

are the principal moments of inertia of the earth E of the mass m.

Since the gravitational force per unit mass is the gradient of the
grav.itational potential, the equation

F8 /i = vuEP

holds, where the operator V is defined as

A A A A

+ M 4 n-
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and X 1 . X., and X3 are measure numbers of the principal axes of the e "th

E. Let us define mutually perpendicular unit vectors ii and 12 as shown

in Fig. A-I. Then

F1 la /m =VUEIP

GM ~ 3G
h+ - 1(-21, + I + L3)t.r 2  2r 4 2

+ 2112 2 + 2113131

Where I1, 1", 13 are the moments of inertia of the earth about the center
the(h cio A A A 1

alotg the directions n , n' n 3 , respectively, and I 12 are the moment
A Aof inertia of the earth about the center for the pair of directions n, n,

and n , n 3 respectively.

By using algebraic transformation, the above equation becomes

GMA 3C A
F /M -I k - (In- I)(1 - 5 sin2  )k 1

r
2  r

4

J0 - 1 )2 sin n A

2r4
t If

3(1, - I)

2,Ia 2

andIA Ar  = k i  ,

then

F M A A
grr + gn (A.8)

where

I + .1 (1 5 sin- q')g r

45



X3

0 X

Im

TA- 514S -440

FIG. A-i ILLUSTRATIONS OF UNIT VECTORS

46



6-,

A A A

1lint vectors r anid n are described in terms of i j and k as

r A r A r A_____

AA

A A

An = cos p-j + sin 4k

ilence Eq. (A.7) is expressed as

r + r\yA r' r
'n = g rt! i " (g I 'gCos L 1 + g sin k

(A.9)

B. substituting Eqs. (A.5), (A.7) and (A.9) into Eq. (A.1) and comparing

t~e easurA values of . A, elements, it is found that

. + 2 cs -s sin 4) - r - + rr

N ,'" 2- s i n u w w rz sin 2

p r ry

+ .(,2r. sin i- cos IL = - , + g + cos FL (A. 10)

- 2wx cos - r cos2  L

+ ar sil L COS LL , + g r + g, sin 4
y 2, 72 o

w he r e

r x

r y - R sin(L - 4L,)

r - + R cos(,L - ,)

r (r
2  

+ r2 +
. 7 2

V' - (j.2 ," + "

g,(), (1 5 sin "k)
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2 r)

sin cp~ fy cos ju + z sin /I + R sin/k

If a 6 x 1 vector X' is defined as

AT [X, y, z~xj

then Eq. (A.10) is written as Eq. (1) in the main text.
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